< Previous기술강좌 시리즈 조사 및 정보 기술위원회 48 자연,터널 그리고 지하공간 ∙ 암석학적 설명 ∙ 층리, 엽리와 같은 시편의 이방성에 대한 하중축의 방향 ∙ 시료 채취 위치, 깊이, 방향, 시료 채취의 날짜와 방법, 시료가 채취된 시간과 환경 ∙ 시험편의 직경과 높이 ∙ 시험시의 함수비와 포화도 ∙ 시험기간과 응력 변화율 ∙ 시험일시와 시험기기의 형태 ∙ 비중, 공극률, 그리고 투수성에 대한 관찰사항 및 물리적 자료 ∙ 규정을 따르지 않는 시험편으로 시험하는 경우 이 사실을 시험결과에 나타내야 한다. 4.3.2 인장강도시험 인장강도시험에서는 직접인장강도시험, 간접인장강도시험, 굴곡시험 등이 있으며, 일반적으로 간접인장강도시험인 압열인장시험 (Brazilian test)이 사용된다. 그림 16은 각 시험에 대한 시험편과 보조 시험기기의 모습을 보여준다. <그림 16> 여러 인장강도시험의 시험편(좌: 직접인장, 중: 간접인장, 우: 굴곡시험) 압열인장시험에 사용되는 보조 시험기기(그림 17)는 시험편과의 접촉각(α)이 15도 이하거나 접촉면이 시험편 직경의 1/6 이하이어 야 한다. 압열인장시험으로부터 인장강도는 식 (9)로부터 계산한다. (9) : 최대 하중 : 시험편의 직경 : 시험편의 두께Vol. 23, No. 3 49 지반조사 이론 및 실내시험 <그림 17> 압열인장시험의 보조 시험기기와 시험편과의 접촉각(한국암반공학회, 2010) 4.3.3 삼축압축강도시험 삼축압축강도시험은 일반적으로 원주형 시험편 주위에 일정 구속압을 가한 후 축방향으로 하중을 가하여 파괴 시의 응력으로부터 강도를 측정하는 시험으로, Hoek cell을 이용한 시험이 편의성 등을 이유로 널리 사용된다. 이러한 시험을 보통 일반삼축압축강도시험 <그림 18> 무결암에 대한 물리적, 역학적 특성 시험성적서 예기술강좌 시리즈 조사 및 정보 기술위원회 50 자연,터널 그리고 지하공간 이라 불리는 데, 이 경우 재하된 중간 및 최소 응력이 같은 제한이 있다. 반면 진삼축압축강도시험은 세 방향의 재하응력이 모두 다르 며, 일반적으로 직육면체형태의 시험편을 사용한다. 지반분야에 널리 사용되는 파괴기준에서 중간 주응력을 고려하지 않은 기준이 사용될 뿐 아니라 시험의 난해성 등으로 인해 국내에서는 진삼축압축강도시험이 거의 이루어지지 않으나, 국외에서는 상황에 따라 시험과 함께 그 결과를 현장에 활용하고 있다. 삼축압축강도시험은 일축압축강도시험, 인장강도시험의 결과와 함께 구속압에 따른 강도를 모어원 등에 도시하고 이로부터 겉보기 점착력과 내부마찰각을 산정하거나 최대주응력과 최소주응력 도표에 도시하여 Hoek-Brown의 변수를 산정할 수 있다. 산정된 값은 암반분류법이나 파괴기준 조건 등에 의해 설계, 시공, 유지관리 등에 활용된다. 시험결과 보고는 일축압축강도시험 등과 유사하나, 각각 제시된 표준시험법에 따라 다소 다를 수 있다. 무결암의 물리적 특성과 역학적 특성에 대해 그림 18과 같이 시험성적서가 시험결과와 그래프 등을 포함하여 제공되며 시험성적서 에는 시험자, 시험일시, 시험방법 등도 명기된다. 의뢰자 또는 시험수행자 등에 따라 요구된 내용 등이 추가적으로 제공될 수 있다. 4.3.4 절리면 전단강도시험 암반은 무결암과 함께 불연속면으로 구성되어 있으며, 역학적으로 불연속면이 불안정한 요소로 작용한다. 불연속면은 절리, 층리, 엽리, 단층, 파쇄대 등을 포함하며 불연속면의 강도가 무결암 자체의 강도보다 낮은 경향이 있다. 따라서 불연속면에 대한 역학적 특성을 파악하는 것이 지반구조물을 설계하는 데 있어 중요하다. 절리는 불연속면 중 하나로 이에 대한 특성과 함께 강도를 산정하고 있다. 절리면 전단강도는 Coulomb의 직선 회귀식(식 (10))을 이용하여 계산될 수 있다. ∙ tan (10) : 전단응력 : 점착력 : 유효수직응력 : 마찰각 Patton(1966)은 절리면의 거칠기를 고려한 전단강도 관계식(식 (11)과 식 (12))을 제안하였다. 는 두 식의 경계를 나 타내는 전이 응력이다. ∙ tan ≤ (11) ∙ tan (12) : 기본 마찰각 : 절리면의 거칢각 : 잔류 마찰각Vol. 23, No. 3 51 지반조사 이론 및 실내시험 Barton과 Choubey(1977)은 여러 실험적 경험을 토대로 식 (13)을 제안하였다. JRC(joint roughness coefficient)는 절리면의 거칢 계수로 그림 19(a)와 같으며, JCS(joint wall compressive strength)는 절리면의 압축강도로서 그림 19(b)와 같이 쉬미트 해머를 이용 하여 측정한다. tan ∙log (13) (a) (b) <그림 19> JRC와 JCS 도표 그림 20은 절리면 전단강도시험에 대한 시험성적서의 예를 제시한 것이다. 시험성적에서는 시험 전후의 사진과 함께 수직강성, 전단강성 등도 포함된다.기술강좌 시리즈 조사 및 정보 기술위원회 52 자연,터널 그리고 지하공간 <그림 20> 절리면 전단강도시험의 시험성적서 예 5. 맺음말 지반조사 및 시험은 지반구조물의 설계, 시공, 유지관리 등을 위한 지반과 암반 재료의 정보를 획득하여 제공하는 것이 목적이며, 가능하면 불확실성을 낮추고 대표성을 갖도록 노력해야 한다. 이를 위해서 조사 및 시험의 품질관리가 중요하며 검· 교정이 된 시험장 치, 표준시험법 그리고 숙련된 시험자 등에 의한 수행이 이루어져야 한다. 조사 및 시험 시 고려해야 할 다양한 많은 요소 중 암석이나 암반의 강도와 변형특성, 현지응력의 크기와 방향, 암반분류, 파괴기준 등을 고려하여 수행된다면 보다 효율적인 조사가 이루어질 수 있다.Vol. 23, No. 3 53 지반조사 이론 및 실내시험 사 사 본 강좌는 한국지질자원연구원 2021년 기본사업의 하나인 “HLW 심층처분을 위한 지체구조별 암종 심부 특성 연구(GP2021-002; 21-3115)” 사업의 지원을 받아 수행하였습니다. 참고문헌 1. 이희근과 양형식, 2002, 응용암석역학, 서울대학교출판문화원, 서울, 504p. 2. 지구환경전문가 그룹, Aug 10, 2021, http://www.ege.co.kr 3. 한국암반공학회, 2010, 표준시험법, 한국암반공학회, 서울. 4. Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6, 189-239. 5. Barton, N.R. and Choubey, V., 1977, The shear strength of rock joints in theory and practice, Rock Mech. Rock Eng., 10, 1-54. 6. Bieniawski, Z.T., 1973. Engineering classification of jointed rock masses. Trans S. Afr. Inst. Civ. Engrs., 15, 335-344. 7. Bieniawski, Z.T., 1974. Geomechanics classification of rock masses and its application in tunnelling. In Advances in Rock Mechanics 2, part A: pp.27-32. Washington,D.C.: National Academy of Sciences. 8. Bieniawski, Z.T., 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. 9. Deere, D.U., Hendron, A.J., Patton, F.D. and Cording, E.J., 1967. Design of surface and near surface construction in rock. In Failure and breakage of rock, proc. 8th U.S.symp. rock mech., (ed. C. Fairhurst), 237-302. 10. Deere, D.U., 1989. Rock quality designation (RQD) after 20 years. U.S. Army Corps Engrs Contract Report GL-89-1. 11. Hoek, E., 1994. Strength of rock and rock masses, ISRM News J, 2, 4-16. 12. Hoek, E., Kaiser, P.K., Bawden, W.F., 1995, Support of underground excavations in hard rock, A.A. Balkema, Rotterdam, 215p. 13. ISRM, 2014, The ISRM suggested methods for rock characterization, testing and monitoring 2007-2014. 14. Lauffer, H. 1958. Gebirgsklassifizierung für den Stollenbau. Geol. Bauwesen 24, 46-51. 15. Marinos, P. and Hoek, E., 2001. Estimating the geotechnical properties of heterogeneous rock masses such as Flysch. Bull. Engng. Geol. Env., 60, 85-92, 16. Palmström, A., 1982. The volumetric joint count - a useful and simple measure of the degree of rock jointing. Proc. 4th congr. Int. Assn Engng Geol., Delhi 5, 221-228. 17. Patton F. D., 1966, Multiple modes of shear failure in rock. Proc. 1st Congr. ISRM, Lisbon, Vol. 1, 509-513. 18. Ritter, W. 1879. Die Statik der Tunnelgewölbe. Springer, Berlin. 19. US Minneapolis-Itasca Consulting Group, Inc., Aug 10, 2021, http://www.itascacg.com 20. Wickham, G.E., Tiedemann, H.R. and Skinner, E.H., 1972. Support determination based on geologic predictions. In Proc. North American rapid excav. tunneling conf., Chicago (eds K.S. Lane and L.A. Garfield), 43-64. [본 기사는 저자 개인의 의견이며 한국터널지하공간학회의 공식입장과는 무관합니다.]54 자연,터널 그리고 지하공간 1. 머리말 지하안전관리에 관한 특별법 시행령(2018.01.01.)이 공포되고 지하안전영향평가가 시행되면서, 도심지 굴착시 지하수 변동과 그에 연동되는 지반침하 안정해석에 대한 전반적인 기술사항이 최근 지반공학 분야의 주요 이슈이다. 응력-지하수 연계해석이 합리적인 공학적 근거에 바탕하여 시행되고 있는지, 또 해석결과가 실제 지하굴착시 발생할 지하수 변동 과 지반침하 현상을 정확하게 예측해내고 있는지 의구심이 있는 상태에서도 주요 기술적 이슈를 공론화하고 합리적 접근방법을 도출 한 이후 안정해석에 반영하는 과정을 거치지 못한 채 지하안전영향평가가 시행되고 많은 도심지 굴착현장에 적용되고 있는 실정이다. 필자는 몇몇 프로젝트에서 안정해석을 수행하고 특정 수치해석 모델을 개발하기도 하였으나, 그런 일천한 경험을 바탕으로 지하수 변동 및 침하 관련 기술사항들을 언급하고 명확한 의견을 제시한다는 것은 부담스러운 일이어서 기술기사 투고요청을 흔쾌히 수락하 기 어려웠다. 그럼에도 불구하고, 지하수 변동 및 침하 안정해석에 관해 정답이라고 생각하는 내용을 명확하게 기술하기 보다는 엔지니어링 영역 의 안정해석 수행 관행이 공학적으로 더 개선되는 방향으로 나아가는 계기로 삼을 수 있겠다는 생각으로 본 고를 작성하게 되었다. 수치해석 프로그램은 이론적으로 정식화하기 어려운 문제에 대하여 해당 재료 및 기하구조의 역학적 거동을 근사적으로 모사하는 고성능 계산기로서, 이론적 배경지식을 바탕으로 계산기를 조작하여야만 실제 현상에 근접한 거동을 결과로 출력해낼 수 있다. 그러 나, 최근에는 범용으로 활용되는 다양한 수치해석 프로그램에 막강한 전후처리 기능이 탑재되어 있어 별도로 수치해석 이론을 습득하 지 않더라도 실무해석을 기능적으로 수행하는데 큰 어려움이 없는 기술 환경이 형성되어 있어, 때로는 동일한 조건에 대하여 수치해석 수행자마다 다른 결과를 도출하거나, 실제 현상에 부합하기 어려운 결과를 도출하고도 그 검증의 복잡함으로 인해 단편적인 몇가지 지하굴착시 지하수 저하로 인한 침하해석 실무 안성율 (주)에스와이텍 연구소장 이창노 (주)에스텍컨설팅그룹 연구소장 장재원 (주)에스와이텍 이사 정재호 (주)에스와이텍 대표이사 정경식 (주)에스텍컨설팅그룹 대표이사Vol. 23, No. 3 55 지하굴착시 지하수 저하로 인한 침하해석 실무 수치를 제시하는 것으로 해석결과를 갈음하는 경우가 있다. 이는 엔지니어링 성과의 측면에서 과도하게 수치해석 업무에 의존하고 있는 우리나라 기술관행을 고려할 때, 동 시대에 활동하고 있는 엔지니어로서 업무적 난맥 상에 대해 수긍할 수 있는 측면이 있기도 하나 최근의 복잡한 도심 지하공간개발 추세와 그로 인해 다양한 지반공학적 문제의 발생이 예상되는 점을 고려할 때 반드시 개선되어 야 하는 관행이라는 점을 언급하지 않을 수 없다. 아무리 막강한 기능이 자동화되어 있는 수치해석 프로그램이라도 문제를 자동으로 해결해 줄 수는 없으며, 단지, 엔지니어가 기획 한 문제 접근방법을 구체화해 가는데 있어 휴대용 간이 계산기에서는 제공받을 수 없는 복잡한 거동의 가시화 및 복합재료의 공학적 수치계산 등의 기능을 제공하는 고성능 계산기로 이해하고 활용함이 바람직하다는 점과 그 활용에 있어 시행착오를 줄일 수 있는 방법에 대해 본 고에서 언급하고자 한다. 2. 수위 저하에 의한 침하에 대한 가정 지반은 수위저하로 인하여 침하가 발생될 가능성이 높으며 침하는 여러 가지 관점에서 정의될 수 있다. 모래지반에서 지하수가 균등하게 저하되는 경우, 침하는 2가지 가정으로 정의된다. 하나는 응력의 변화로 인한 역학적인 거동과 느슨한 모래의 경우는 간극비 감소로 인한 압축 이 부분은 해석 방법 자체가 달라서 이 두가지를 한 모델에서 모델하기는 쉽지 않다. 물론 이러한 모델을 해석하는 모델도 있지만 일반화되어 사용되는 것은 찾기 어렵다. 모래지반에서 한쪽으로 흐름이 발생되면서 수위저하가 되는 경우는 침투수력이라고 하는 특수한 힘이 생기고 이 경우 지반의 응력 은 중력 방향이 아닌 흐름의 방향으로도 변화가 된다. 이런 경우도 역학적인 방법과 연동해석의 방법이 적용되고, 느슨한 경우는 간극 비의 변화인 압축도 발생되게 된다. 또한 침투수력에 의한 파이핑으로 인한 토사 유실도 가능하다. 여기서, 1년 주기로 우기가 형성되는 우리나라에서 ‘모래지반은 매년 침하가 될 것인가?’에 대한 의문이 생길 수 있다. 과거에 받았던 하중에 대하여는 침하비율이 낮아지고 어느 반복 이상부터는 침하가 발생되지 않는다. 이러한 경우가 해안가에 수위 가 변화로 표면의 N값이 큰 것이 이러한 거동 때문인 것은 주지의 사실이다. ‘그럼 어떤 경우가 문제인가?’ 과거 이력보다 지하수 저하가 증가한 경우 침하가 된다고 본다. 이러한 비율을 해석에 반영하는 것은 상당히 어렵지만 다양한 조건 변화를 반영한 수치해석을 통해 실제 현상을 근사적으로 모사할 수 있다. ‘점토 지반이면서 지하수위가 낮아지는 경우는 어떤 거동이 발생할까?’ 우선 점토 지반은 굴착 기간이 아주 길지 않고 짧은 경우, 수위저하가 발생되기 전에 끝날 수 있다. 심지어 지하수위 저하를 막아주는 역할을 할 수도 있다. 이러한 경우는 수위저하의 문제 보다는 과잉간극수압으로 인한 비배수강도 저하에 따른 전단 파괴가 지반의 거동에 치명적이다. 따라서, 점토지반에 굴착을 하는 경우 는 지하수위 저하 문제 보다는 지반 변형이 지반의 과잉간극수압을 증가시켜 지반의 전단강도를 비배수 조건으로 만드는지에 대한 검토가 우선 되어야 한다. 점토와 모래의 중간정도 지반인 경우 대형사고가 발생한 현장이 많다. 그것은 지반의 응력변화 및 침투수력에 의한 변형보다, 어떤 유로에 의한 파이핑으로 인한 토사의 유실이 문제가 되기 때문이다. 이러한 경우 변형해석 결과가 만족되더라도 파이핑에 대한 검토가 누락되었다면, 현장에서는 도로의 침하, 대형 공동 등이 발생할 수 있다. 최근에는 터널의 현장에서도 파이핑에 의한 지반침하가 발생 되는 경우가 있다. 터널내로 지하수와 토사가 유입되면서 지표면의 토사가 유출되어 지반침하가 발생된다. 이런 경우는 해석프로그램 의 단순한 방법으로는 절대로 답을 찾기 어렵다.기술강좌 시리즈 지하융복합개발 기술위원회 56 자연,터널 그리고 지하공간 모래 지반에서의 파이핑은 수치해석기법으로 풀어내기 어려운 문제이다. 범용 프로그램의 기능 만으로 그에 대한 안정성 확보여부 를 판단하지 못하는 것 중에 하나이며, 이는 주상도 및 지반의 침투해석과 공법의 특성을 충분히 이해한 경험이 풍부한 기술자가 오랜 시간 고민하고 집중해야 찾을 수 있고 대부분은 사고가 난 다음에 찾는 경우가 많다. 3. 응력 변화 지반에서 수위가 변화하면 지반내 응력의 변화가 발생되고, 이것은 지반의 거동을 초래한다. 이것은 탄성론을 이용하여 산정할 수 있으며 간단한 산술식으로 계산할 수 있다. 3.1 지하수위 단순저하 토질역학 측면에서 볼 때, 수위 저하는 지반내 유효응력의 변화를 가져온다. 그림 1과 같이 지하수위가 수평적으로 일정한 저하가 된다면 A점에서의 유효응력의 변화를 가져오고, 절점 요소로 가정하면, 모든 점에서는 구속 조건의 변형도 발생한다. <그림 1> 지하수위 다운에 의한 하중증가에 대한 유효응력 변화 토질역학에서 구속조건에서의 구속압축 탄성계수 D를 사용하며, 역학적으로 수평방향의 변형이 없는 조건으로 역학적으로 로 표시한다. 중력방향을 z로 설정하고 구속탄성계수는 다음 식과 같이 계산할 수 있다. , , 토질역학에서는 체적변화에 대한 계수로 를 사용하고, 이는 구속조건에서의 응력변화로 인한 압축을 의미하며 다음 식과 같이 정의된다. Vol. 23, No. 3 57 지하굴착시 지하수 저하로 인한 침하해석 실무 토질역학에서 다루어지는 변형계수는 다음과 같다. 가끔 상호 혼동하는 경우가 있으며, 조건에 따라 다음과 같다. ∙ 탄성계수 : (여기서, 변형율은 전체를 의미함) ∙ 체적변화계수 : (여기서, 변형율은 체적의 변화) ∙ 전단변형계수 : (여기서, 변형율은 전단변형) ∙ 구속변형계수 : (여기서 변형율은 구속조건 변형) 주의할 점은 역학적 의미에서 와 를 혼단하는 경우가 있는데, 그것은 를 평평한 하중의 조건에서 체적변화계수와 같기 때문 에 용어가 혼동되어서 그럴 수 있다. 역학적인 경계조건은 다음과 같이 구분된다. : 0을 포함하여 각각의 값이 존재하는 조건이다. 등방조건에서는 : ‘이런 경우 침하는 어떻게 산정할수 있을까?’ 고민해볼 수 있다. 보통은 여기까지 정리되면, 침하는 간단하게 산정할 수 있다. 주의 할 점은 응력값이 있더라도 응력의 변화가 없으면 변형이 없다. 특히 지반문제에서 혼동할 수 있는 부분이다. 응력이 100kPa이 침하 를 일으키는 것이 아니라, 100이었던 응력이 120으로 변화가 생기고, 즉 으로 증분값이 있어 침하가 발생된다. 토질문제에서 응력의 변화가 거동을 발생시키는 대전제를 해석에 몰두하다보면 잊는 경우가 간혹 있다. 다음은 구속조건에서의 압축계수를 이용한 지표면의 침하를 산정하는 방법이다. ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙≡ ∙ = 2, =10, E=10,000kPa, v=0.3333 일 때 다음과 산정된다.Next >